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b Departamento de Mecánica, ETSII, UNED, C/Juan del Rosal 12, E-28040 Madrid, Spain

Received 29 July 2004; received in revised form 24 January 2005; accepted 26 January 2005

Available online 13 April 2005
Abstract

A drawback common to PLIC schemes is the difficulty of reconstructing the interface when filaments of a thickness

smaller than the cell size are present. In this work we present an improvement of the reconstruction method proposed

by López et al. [A volume of fluid method based on multidimensional advection and spline interface reconstruction.

J. Comput. Phys. 195 (2004) 718] for two-dimensional flows, which allows tracking fluid structures thinner than the cell

size by allowing the interface to be represented in each cell by two non-contiguous linear segments. The method is based

on using markers that are placed every time step at the mid-points of the reconstructed cell interface segments. The

markers are used to improve the orientation and location of the interface segments, although the method essentially

remains of a VOF type. Numerical tests show that a substantial improvement in accuracy is achieved over previous

volume of fluid methods, and that the proposed method compares well even with a recent hybrid markers and volume

of fluid method.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Volume of fluid methods, along with front tracking [29,40,42,43], level set [13,27,38,39] and phase field

methods [8,21,20,44], are the most frequently used direct numerical simulation methods for tracking inter-

faces using a fixed-grid. Reviews of the historical development of volume tracking methods, which can be

distinguished from each other by the features of the interface reconstruction algorithm and of the method
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used for time integration of the volume fraction advection equation, can be found in [7,32–34,36]. Different

improvements have been introduced recently in VOF methods to keep them competitive with the more re-

cent methods mentioned above. Rider and Kithe [33] proposed a piecewise linear interface calculation

(PLIC) method and a multidimensional unsplit time integration scheme, in which material volume fluxes

are computed systematically using a set of simple geometric tasks. Harvie and Fletcher [18] proposed a
new VOF advection algorithm (termed the Stream scheme) that uses a PLIC method coupled to a fully mul-

tidimensional cell face flux integration technique. Later, these authors [19] proposed another new multidi-

mensional advection algorithm (the defined donating region (DDR) scheme), which conserves fluid volume

rigorously without the need for a local redistribution algorithm, although with an accuracy comparable to

that of the PLIC direction-split advection scheme of Youngs [45]. More recently, Aulisa et al. [2] presented

a new advection method (termed the P method), which exactly preserves mass for incompressible flows on

a Cartesian mesh and shows a performance comparable to VOF multidimensional advection methods such

as those of Rider and Kothe [33] or Harvie and Fletcher [18]. Another example of a multidimensional
advection algorithm can be found in [28]. Recent enhancements of the second-order reconstruction method

proposed by Chorin [9] (in which the normal and the local curvature of the interface are obtained from the

osculating circle of a curve defined by a 3 · 3 array of volume fractions, and which is only applicable to

orthogonal grids), which perform well on unstructured meshes, were proposed by Mosso et al. [26] and

Garrioch and Baliga [14]. In a more recent work, Scardovelli and Zaleski [37] presented two new recon-

struction algorithms based on a least-square fit technique (one of them with a variant that maintains the

continuity of the interface at the boundary of adjacent cells), and a new mixed split Eulerian implicit–

Lagrangian explicit (EI–LE) advection algorithm. López et al. [24] proposed an improved VOF method
based on multidimensional advection using edge-matched flux polygons, and spline-based interface recon-

struction (EMFPA-SIR). Recently, different hybrid methods that combine the best characteristics of VOF,

level set or front tracking methods have been proposed [1,11,41].

In this paper, we present a further improvement of the PLIC-VOF method proposed by López et al. [24],

which allows for filaments of a thickness smaller than the grid cell size to be resolved. It is well known that

commonly used reconstruction algorithms, such as Youngs� algorithm [45], which calculate the interface

normal from the volume fraction gradient, tend to produce ‘‘blobby’’ filaments when these become too thin

to be resolved on the grid. In the EMFPA-SIR method proposed in [24], the orientation of the interface
segment in each element is initially determined using Youngs� algorithm, and then corrected with the aid

of a cubic spline interpolation through the center points of the interface segments. Although this correction

was found to reduce �flotsam� substantially, the errors in the calculation of the interface normal still lead the

tracking method, in an attempt to locally enforce mass conservation, to incorrectly locate the fluid volume

when the grid is not fine enough to resolve small fluid flow features. The method proposed in the present

work reduces these errors by allowing the interface to be represented in each cell by two linear segments

when fluid structures thinner than the cell size are present, as in Fig. 1, and by introducing a special pro-

cedure in cells where the interface curvature is too high. These special reconstruction procedures are based
on using markers that are placed every time step at the mid-points of the reconstructed cell interface seg-

ments. The new locations of markers after advection are used to calculate the orientation and location of

tentative interface segments at the new time step (following a procedure described in Section 2.1), whose

mid-points are interpolated using splines in order to obtain the final interface segments (as described in Sec-

tion 2.2). Despite the use of markers, we will see below that the method remains essentially a VOF-type

method. A second improvement of the proposed method over previous methods lies in the use of a new

simple analytical algorithm to locate the interface segments by enforcing local volume conservation (pre-

sented in Section 2.3), which can handle interface cells with two non-contiguous segments. The use of
the interface advection method in cells with thin filaments is described in Section 3, coupling with the Na-

vier–Stokes equations is treated in Section 4, and some of the results obtained in different tests are discussed

in Section 5.
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Fig. 1. Interface reconstruction using two linear segments in a cell with (a) only one portion of fluid and (b) two portions of fluid.
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2. Interface reconstruction

The interface is approximated in each cell by a straight segment (as in any classical PLIC-VOF scheme),

except in some cells where two non-contiguous segments will be used. Each segment is defined by the line

n Æ x = C, where n and x are the unit vector normal to the interface (pointing inward from the fluid region)
and the position vector of a generic point on the line, respectively, and C is a constant. At every time step,

the advection of the volume fraction distribution is first solved following the procedure described in Section

3, and then the interface is reconstructed at the interface cells using linear segments, according to a proce-

dure that basically consists of two steps:

(1) Constructing tentative segments and making a list of ordered points along the interface consisting of

the mid-points of these segments.

(2) Readjusting the tentative segments by using a spline interpolation through the ordered points in order
to determine final segment orientations.

In both steps, the constant C of every tentative (step 1) or final (step 2) segment is obtained following the

procedure described in Section 2.3 to enforce the local volume conservation constraint imposed by the vol-

ume fraction distribution.
2.1. Construction of tentative segments and a list of interpolation points

We propose two different procedures, one for the initial instant (Fig. 2(a)) and another for subsequent

time steps (Fig. 2(b)).

2.1.1. Initial instant

Although any of the algorithms proposed by Ginzburg and Wittum [15] or López et al. [24], for example,

could be used, we propose here a simpler procedure, similar to that used by Shin and Juric [40] for interface

reconstruction in a front tracking method, which can easily be extended to three dimensions. The tentative
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Fig. 2. Schematic representation of the construction of a tentative segment (before local volume enforcement) at (a) the initial instant

and (b) subsequent time steps.
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segments are constructed by sequentially joining the points in cell faces where the interpolated volume frac-

tion is Fm = 0.5. The position vector, xm, of each of these points is determined by linear interpolation from

the values of the volume fraction at the ends of the corresponding cell face, F ciþ1
and F ci , which, in turn, are

calculated by averaging the volume fractions of the corresponding surrounding cells (Fig. 2(a)):
xm ¼ xciþ1
� F ciþ1

� 0:5

F ciþ1
� F ci

xciþ1
� xci

� �
; ð1Þ

F c ¼
P

F kV kP
V k

; ð2Þ
where Vk is the volume (area) of cell k. The normal vector of each tentative segment can be obtained from
n ¼
ðxmjþ1

� xmjÞ
?

jðxmjþ1
� xmjÞ

?j
; ð3Þ
where xmj and xmjþ1
are the position vectors of the points at cell faces, ordered as indicated below, and ^

denotes the perpendicular vector rotated anticlockwise (i.e., ðxmjþ1
� xmjÞ

? ¼ ½�ðymjþ1
� ymj

Þ; ðxmjþ1
� xmjÞ�).

Note that local volume conservation has not been enforced yet, which tends to produce interface loca-

tion errors in regions of high curvature. Fig. 3(a) shows the locations of the mid-points of the tentative seg-

ments obtained in the reconstruction of a circle with a low dimensionless diameter, d/Dx = 3.84 (Dx is the

cell size), using the procedure described above. It can be observed that the mid-points of the tentative seg-

ments significantly deviate from the exact interface location. In order to remedy this, Shin and Juric [40]
reconstruct the interface to an optimum value of Fm (that approaches 0.5 with increasing resolution), for
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which the volume enclosed by the interface is the same as the volume before reconstruction. The main ben-

efit of this approach is that the reconstruction procedure alone does not affect the global volume. The effect

on local volume conservation was found to be negligible so long as high curvature regions of the interface

are reasonably resolved. In this work, we follow a different approach, strictly conservative, based on mod-

ifying the position of every tentative segment following the procedure described in Section 2.3, although a

method such as Brent�s (see for example [30]) could also be used.

The interpolation points will be the mid-points of the tentative segments obtained after volume conser-
vation enforcement, and their order in the list is chosen so that cells with F = 1 remain on the left side as we

move forward along the interface (Fig. 2(a)). When possible, the sequence starts in a cell adjacent to a

boundary of the domain that allows this order to be followed. Otherwise, an arbitrary interface cell is se-

lected to start. In the first cell, the first point of the segment will be that at the edge between corners i and

i + 1 where F ci P 0:5 and F ciþ1
< 0:5, provided that these are ordered anticlockwise. The next cell where

the interface segment is to be constructed will include the edge of the previous cell that contains the second

point of its interface segment (obviously, the first point of the new interface segment will coincide with the

second point of the segment of the previous cell). This procedure is successively applied to other interface
cells until the first cell of the sequence or a domain boundary is reached. The construction of a new se-

quence will begin if more interface cells still remain.

2.1.2. Subsequent time steps

At every time step n + 1, the procedure begins (except for certain situations discussed below) by placing

marker particles at the mid-points of the interface segments constructed in the previous time step, whose

position vectors are denoted by xi
p. These particles are advected with the local fluid velocity, vp, which is

obtained from a weighted average of the velocities at the centers of cell faces, vi:
vp ¼
P

i
1
di
viP

i
1
di

; ð4Þ
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where di is the distance from the particle to the face center i. The position vector of the new location of each

particle is computed as
Fig. 4

particl

segme
xp ¼ xi
p þ v�pDt: ð5Þ
In tests with a prescribed velocity field, v�p ¼ ðvnp þ vnþ1
p Þ=2, where vnp and vnþ1

p are the velocity vectors at the
initial location of the particle at instants tn and tn+1 = tn + Dt, whereas when the motion equations are being

solved, v�p will correspond to the velocity vector obtained after the MAC projection described in Section 4 at

the initial location of the particle. It should be mentioned that particles will be used only in the procedure to

compute the orientations of the interface segments, which are later readjusted to enforce volume conserva-

tion, and so a higher order of accuracy is not crucial. As in front tracking and marker methods, the use of

particles allows us to maintain the interface integrity in regions with fluid filaments of thickness smaller

than cell size, as in Fig. 4. The locations of the advected particles could be used directly to obtain the spline
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interpolation curve, from which the orientation of the interface segment at every interface cell could be

determined. However, in order to prevent particles from becoming too close or too far from each other

when interface deformation is strong, and to obtain a better estimation of the interface segment slope

(as is shown in the example of Fig. 5, when the advected particle lies far from the mid-point of the interface

segment, the normal of the spline curve at this particle may produce an incorrect orientation of the cell seg-
ment), we propose instead the following procedure.

The locations of the advected particles (denoted by black circles in Fig. 4(a)) are linked with straight

lines, represented by np Æ x = Cp. The intersection points between these lines and the grid cell faces deter-

mine one or more tentative linear segments in each interface cell (their mid-points are denoted by open

squares in Fig. 4(b)). The position vector of each intersection point, which is denoted by a cross symbol

in Fig. 4, can be obtained from
Fig. 5.

the cel
xm ¼
n?f Cp � n?pCf

n?f � np
; ð6Þ
where nf and Cf define the corresponding cell face, nf Æ x = Cf. The normal vector of every tentative segment

is then determined, as in the previous section, from Eq. (3), and its location is finally readjusted by enforc-

ing volume conservation using the method described in Section 2.3. The mid-points of these readjusted ten-

tative segments will be used, instead of the advected particles, as interpolation points, which will be ordered

in accordance with the order of the mid-points of the segments in the previous time step where the corre-

sponding particles were placed.
Pinch-off and reconnection are assumed to occur when the distance between two interface segments be-

comes lower than a given value. When this situation is detected, the particles corresponding to these seg-

ments are reassigned to the appropriate interpolation list. Fig. 6 shows an example of the coalescence of two
Incorrect orientation

of the interface segment

Advected
particle

Example of a case in which the use of an advected particle as spline interpolation point to obtain the normal of the interface in

l produces an incorrect segment orientation.
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fluid blobs of elliptical shape, initially separated by a distance of 0.64Dx (Dx = Dt = 1/32) in a domain of

1 · 1, which are advected with the velocity field vx = x, vy = 0.485 � y. The interface was reconnected when
the distance between two particles in a cell reached a value lower than 0.25Dx, which occurred at the instant

42Dt (Fig. 6(c)), for which the exact solution gives a shortest distance between the two deformed ellipses of

0.172Dx.
In cells that are not crossed by any straight line linking the advected particles, but in which 0 < F < 1, the

interface is reconstructed with a single segment using Youngs� method [45]. This segment is not further ad-

justed, its mid-point is not included in the list of points to be interpolated, and no particle to be advected in

the next time step is placed within the cell.

In cells where F = 1 or F = 0, and which are crossed by any line linking advected particles (regardless of
whether the cell contains any particle or not), the interface is not reconstructed, but the mid-points of the

segments determined by the crossing points of the lines with the cell faces are included in the list of points to

be interpolated. A particle to be advected in the next time step will be placed on each of these points.
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In cells crossed by more than one straight line linking advected particles, for which the interface will be

reconstructed using two linear segments, the method is applied in a similar way as explained above,

although the adjustment of the tentative segments to enforce local volume conservation requires a special

procedure that will be explained in Section 2.3.

2.2. Spline interpolation

As already mentioned, the final orientation of every interface segment will be given by the slope of the

spline interpolation curve at the mid-point of the tentative segment (with some exceptions discussed below).

To determine this curve, the coordinates of the interpolation points are parametrized as [xj(sj),yj(sj)], where

s is an approximation to the length of the curve from the initial point, which, for the point j, is defined as
sj ¼
Xj�1

i¼1

jxiþ1 � xij: ð7Þ
The parametric curve x = x(s), y = y(s) is constructed using a natural cubic spline interpolation (see for

example [30,12]), and the normal to each segment of the interface is obtained as
nj ¼
½�y 0ðsjÞ; x0ðsjÞ�

½x02ðsjÞ þ y 02ðsjÞ�1=2
; ð8Þ
where central differences are used for the derivatives. At the extreme cells we take
n ¼ ðxiþ1 � xiÞ?

jðxiþ1 � xiÞ?j
; ð9Þ
where i denotes the first or the last but one segment mid-point of the sequence. If the curve is closed, the

first and last points of the curve coincide in the same cell, in which case we take the normalized average of

the two extreme values obtained from Eq. (9).

The constant C for every final interface segment is determined by enforcing volume conservation, to

which aim we can use, among other methods, the iterative method of Brent, the analytical method proposed

by Gueyffier et al. [17] for rectangular grids, or the new method presented in Section 2.3, which can be ap-
plied to irregular grids with quadrilateral cells.

There are some particular situations in which special procedures must be followed: for example, when

the two intersection points between lines linking particles and the faces of a given cell lie at the same face,

as shown in Fig. 7(a), and the volume fraction of the cell is very large or small. In this case, spline inter-

polation correction followed by volume conservation enforcement may give rise to an inappropriate loca-

tion of the mid-point of the final segment, as shown in Fig. 7(b), as a result of a small difference between the

slopes of the tentative segment (parallel to the cell face) and the tangent to the interpolation curve at the

mid-point of the tentative segment. In this and other similar cases (which we define using the criterion that
the distance between the mid-points of the tentative segment and of the readjusted segment exceeds a given

value, typically Dx/4) the tentative segment is not readjusted after spline interpolation, and only the volume

conservation constraint is enforced.

Another particular case considered, which is depicted in Fig. 8, occurs when the two straight lines linking

three consecutive particles form too small an angle. This type of situation, which is found, for example, at

the tail of the fluid filament formed in the single vortex test presented in Section 5, tends to increase the

interface location error, particularly when particle b in Fig. 8 is far from the mid-points of the contiguous

segments, a circumstance which will depend on the location of particles relative to grid cells. The only dif-
ferences in handling these situations are the following: (1) The point where particle b is located is included

in the list of points to be interpolated by splines; (2) the tentative segment in the cell is not readjusted after
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spline interpolation, and (3) the particle b, instead of the mid-point of the reconstructed interface segment,

will be tracked in the next time step.

2.3. Enforcement of volume conservation

Local volume conservation, which is the main reconstruction constraint, must be enforced taking into

account the new volume fraction distribution, which in this work is obtained following the edge-matched

flux polygon advection (EMFPA) procedure described in Section 3. One method commonly used in PLIC-

VOF schemes to determine the interface segment position at each cell is the iterative method of Brent,

which is a root-finding algorithm based on a combination of a root bracketing, interval bisection, and in-

verse quadratic interpolation (see for example [30]). In this section, a new analytical method is proposed,

which can be applied to irregular grids of quadrilateral cells. The CPU time required for this method typ-

ically varies between 50% and 80% of the time taken by Brent�s method, depending on the orientation of the
segment in the cell, the volume fraction and the number of iterations used in Brent�s method. We will first

consider the case in which only a single segment is required to represent the interface in a cell.

2.3.1. Cells with only one interface segment

The most general case is shown in Fig. 9(a). The position vector of the intersection point between the cell

face i, represented by nfi Æ x = Cfi, and the approximated interface, n Æ x = C, can be expressed as
xIi ¼
n?f iC � n?Cf i

n?fi � n
; ð10Þ
where n?f i and n^ are, respectively, the vectors perpendicular (rotated anticlockwise) to the normals nfi and n
(we recall that the normal n was obtained from Eq. (3) in the tentative reconstruction described in Section

2.1, and from Eq. (8) in the final spline-based reconstruction of Section 2.2). Taking into account that the

area of a polygon of k vertices can be expressed as
A ¼ 1

2
x?
k � x1 þ

Xk�1

i¼1

x?
i � xiþ1

 !
; ð11Þ
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imposing the condition that A = FAX, where AX is the cell area and A is the area of the polygon f1-f2-I2-I1

in Fig. 9(a), and rearranging terms, the constant C may be obtained from
aC2 þ bC þ c ¼ 2A; ð12Þ
where
a ¼ n?f2 � nf1
n?f1 � nð Þ n?f2 � nð Þ ; ð13Þ

b ¼ 2Cf2

n?f2 � n
� 2Cf1

n?f1 � n
; ð14Þ
and
c ¼ x?
f1 � xf2 þ

n � xf1

n?f1 � n
Cf1 �

n � xf2

n?f2 � n
Cf2: ð15Þ
Subscripts 1 and 2 refer to the cell faces intersected by the interface segment, and xf1 and xf2 are the position
vectors of the nodes of the intersected faces that are within the fluid.

In the case of Fig. 9(b), we only need to make xf1 = xf2 in Eq. (15). The case of Fig. 9(c), in which three

nodes of the cell are within the fluid, becomes equivalent to that of Fig. 9(b) if the nodes f1 and f2 are as-
sumed to coincide with the cell node that is outside the fluid and Eq. (12) is solved making A = (1 � F)AX.

As an example, Figs. 3(b) and (c) show the tentative and final segments, respectively, obtained in the

reconstruction of a circle after enforcement of local volume conservation, and allow one to observe the

qualitative improvements introduced by the correction of the tentative segments and the readjustment

based on spline interpolation and subsequent volume conservation enforcement.

2.3.2. Cells with two interface segments

In cells in which the interface is represented by two (non-contiguous) segments, local volume conserva-
tion must be enforced ensuring the integrity and accuracy in the location of the fluid filament. To determine

the first segment in one of these cells, step 1 (see the beginning of Section 2) simply involves the construction

of the initial tentative segment (according to the procedures described in Section 2.1) and its subsequent

translation parallel to itself, so as to pass through the corresponding advected particle, p1, as indicated

in Fig. 4(c). The constant in the equation of this segment is thus obtained as C1 ¼ n1 � xp1 , where n1 is cal-
culated from Eq. (3). The mid-point of this segment is added to the corresponding list of interpolation

points. In step 2, the orientation of the interface segment is readjusted after spline interpolation, obtaining

n1 from Eq. (8) (this readjustment is omitted in Fig. 4), but volume conservation is not enforced in this step
either. If no advected particle lies within the cell, the corresponding mid-point of the original tentative seg-

ment, i1, is used to obtain the position of the segment ðC1 ¼ n1 � xi1Þ.
Once the location of the first segment has been obtained, local volume conservation is enforced by deter-

mining the location of the second segment in the cell in accordance with the following procedure, taking

into account that the area of fluid in the cell delimited by the two segments must obviously be equal to

FAX. If there is only one portion of fluid in the cell, as in Fig. 1(a), the constant C2 in the segment equation

is obtained from Eq. (12), making A = (1 + F)AX � A1 (colored area in Fig. 4(d)), with A1 being the area of

the cell region delimited by the first segment to which the normal n1 points (colored area in Fig. 4(c)). The
normal n = n2 of the segment in Eqs. (13)–(15) is obtained from Eq. (3) in the tentative reconstruction (step

1) or from Eq. (8) in the spline-based adjustment (step 2). If there are two portions of fluid in the cell, as in

Fig. 1(b), the procedure is similar, but making A = FAX � A1 in Eq. (12).
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When A1/AX < F or A1/AX > F in cells with one or two portions of fluid, respectively, there is no position

of the second segment that allows local volume conservation to be enforced. In such cases, the interface is

reconstructed with a single segment.

Although thin fluid structures are in practice created during the simulation, and are not usually present

at the initial instant, the construction of the interface segments in cells containing a filament at this instant
could be achieved by linking the intersection points between the initial interface shape and cell faces, and

then modifying the location of one of the segments by enforcing volume conservation, as explained above

for subsequent time steps. A particle to be advected in the new time step would be placed at the mid-point

of each segment.
3. Interface advection in cells with thin filaments

Once the interface has been reconstructed in all the interface cells at the previous time step, the advection

of fluid is solved for the next time step by geometric considerations, as in conventional volume of fluid

methods. In this section, we briefly describe how to use advection algorithms in cells with two interface

segments.

The first step is to construct flux polygons at the cell faces such as those shown in Figs. 10(a) and (b).

Although the type of polygons in these figures is that proposed by López et al. [24], which was found to be-

have well in reducing advection errors, the method described here can be applied to other types of polygons,

such as that proposed by Rider and Kothe [33]. The area of fluid advected through the cell faces considered
in Figs. 10(a) and (b) is determined from the areas delimited by the flux polygon and the interface segments.

If the flux polygon is cut by two segments within the cell, the fluxed area will beAx1 + Ax2 � Ax (whereAx is

the area of the flux polygon, andAx1 andAx2 are the areas of the regions in the flux polygon delimited by the

first and second interface segments, respectively, from where the normal to the segment points) or

Ax1 + Ax2, depending on whether there are one or two portions of fluid within the polygon.

In [24], we discussed that the suppression of polygon over/underlapping situations and the increase in

accuracy derived from the reduction of discretization errors in the EMFPA algorithm reduce interface

advection errors and the need for a redistribution algorithm to suppress F values outside the range
0 6 F 6 1. As shown in [24], the fact that the EMFPA algorithm does not require correction of the flux

polygons at the cell corners, as proposed by Rider and Kothe [33], makes any subsequent divergence cor-

rection unnecessary in tests with a prescribed solenoidal velocity field. In tests where the velocity field is

calculated from the Navier–Stokes equations (as in the Rayleigh–Taylor test of Section 5.2), an advection

equation of the form
of
ot

þr � ðvf Þ � fr � v ¼ 0 ð16Þ
(F is the discretized version of the function f) is considered in order to take into account the divergence

error present in the velocity field. Rider and Kothe [33] showed that by taking into account the last

term of Eq. (16) a more precise local and global conservation of F can be attained, along with a reduc-

tion (although not complete) in the appearance of cells with volume fractions greater than 1 or lower

than 0.
It is well known that the extension to three-dimensions of PLIC-VOF methods is not a simple task, espe-

cially because of the complex geometrical operations involved. Good examples of successful implementa-

tions of previous PLIC-VOF methods in 3D can be found in [17,22,23]. The extension of the method

presented here does not represent an appreciable increase in complexity with respect to that proposed in

[24], where the outlook of the method for 3D was briefly discussed.
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4. Coupling with the Navier–Stokes equations

The interface reconstruction and advection algorithms described above were solved in combination with

the incompressible Navier–Stokes equations to obtain some of the results presented in the next section. For

this purpose, the proposed algorithms were implemented into a code that solves the Navier–Stokes equa-

tions on both sides of the interface. The code, which we described in detail in [16], is based on the approx-
imate projection method proposed by Almgren et al. [4], and generalized to variable density flows by
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Puckett et al. [32]. In the first step, an intermediate velocity field v*,n + 1 is computed from the momentum

equation, ignoring the incompressibility constraint, approximating the convective term at tn+1/2 and treat-

ing the pressure gradient as a source term, which is evaluated at tn � 1/2. In the projection step, the inter-

mediate vector field v*,n + 1/Dt + (Gpn � 1/2)/qn + 1/2, where G is a discrete gradient operator, is projected

to the space of divergence-free vector fields to obtain the velocity vn+1 and pressure pn+1/2.
The density and viscosity in each computational cell are calculated from
q ¼ q1 þ ðq2 � q1ÞeF ; l ¼ l1 þ ðl2 � l1ÞeF ; ð17Þ
where subscripts 1 and 2 denote fluids at both sides of the interface and eF is a continuous and smoothed

indicator function obtained from the volume fraction distribution by using a cubic kernel [25,35].

The discretization procedures applied to the equations derived from the projection algorithm are similar

to those described by Puckett et al. [32]. A Cartesian computational grid is used, in which the discrete values
of the velocity components, indicator function and fluid properties are located at the cell centers and the

pressure values at the cell corners. For discretization of the convective term in the momentum equation,

we used a method similar to the predictor–corrector methods used by Puckett et al. [32], among others,

which is based on the unsplit Godunov method introduced by Colella [10]. In the predictor step, the veloc-

ity is extrapolated to the cell faces at tn+1/2 using a second-order Taylor series expansion in space and time.

Before constructing the convective derivatives, a MAC projection [5] is applied to make the normal velocity

components at the cell faces divergence-free. The algorithms for advection of the volume fraction distribu-

tion and interface reconstruction are applied every time step after the MAC projection, using the extrap-
olated velocities to the cell faces at the intermediate time tn+1/2.
5. Discussion of results

5.1. Tests with prescribed velocity field

The efficiency and accuracy of the proposed method were assessed by solving different test problems. In
this section, we present some of the results obtained in two tests that allow us to investigate the ability of the

proposed reconstruction method to track fluid filaments with a thickness smaller than the cell size. As we

mention below, for fluid structures sufficiently thicker than the cell size, the proposed method tends to pro-

duce similar results to those of the method proposed in [24], where several numerical tests were presented

for these cases.

The first test consists in the advection of a rectangular area of fluid 0.075 wide by 0.15 high, centered in a

1 · 1 domain where the velocity is horizontal and varies linearly in the vertical direction: vx = 2(y � 0.5) (the

origin of y is at the bottom of the domain). A CFL number based on the maximum velocity in the domain
equal to one was used in all computations. An interesting feature of this test is that, when using advection

algorithms such as EMFPA [24], the contribution of the advection step to the error is negligible, and so the

total error is solely due to reconstruction. Fig. 11 shows the area occupied by the fluid in every interface cell

at four instants, obtained using four different reconstruction algorithms and a relatively coarse grid of

32 · 32 cells. The thickness of the filament given by the exact solution varies from d = 1.07Dx at t = 1 to

d = 0.47Dx at t = 2.5 (d/Dx = 2.4 at the initial instant). It can be observed from Fig. 11 that, particularly

when d < Dx, the proposed reconstruction method preserves the integrity of the filament better than the

spline reconstruction method of López et al. [24], which in turn substantially improves the results obtained
using our implementation of Youngs� and Puckett�s methods. The improvement in the interface location

accuracy can be observed quantitatively from the values indicated in Fig. 11 of the L1 error norm, defined

as
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E ¼
X
i;j

Aði;jÞ
X F ði;jÞ � F ði;jÞ

e

�� ��; ð18Þ
where Aði;jÞ
X is the area of the cell (i, j), and F(i,j) and F ði;jÞ

e are, respectively, the calculated and exact volume

fractions corresponding to a given instant.

The second test corresponds to the simulation of the time-reversed single vortex flow for conditions ta-

ken from the work of Rider and Kothe [33]. A circle of fluid of radius 0.15, initially centered at (0.5,0.75) in

a unit square computational domain, is deformed in the solenoidal velocity field defined by the stream func-
tion Wðx; yÞ ¼ 1

psin
2ðpxÞsin2ðpyÞ cosðpt=T Þ. The circle of fluid undergoes the largest deformation at t = T/2

and returns to its initial state at t = T. The interface location error is estimated with the L1 norm defined in

Eq. (18). The order of convergence can be determined from
O ¼ lnðE2nx=EnxÞ
lnð1=2Þ ; ð19Þ
where Enx and E2nx are the errors obtained using two different grids with nx and 2nx cells along one direc-

tion. All the results presented here were obtained using a CFL parameter (based on the maximum velocity
component in the domain) equal to one. Table 1 shows the L1 error norm and order of convergence ob-

tained for T = 8 and four different grid sizes, using Puckett�s reconstruction method and different advection

methods, and the EMFPA-SIR algorithm. The iterative method of Puckett [31] has been implemented fol-

lowing the indications given in [18]. Table 2 shows the same type of results, obtained using the proposed

method (with and without including the spline-based reconstruction step) and the hybrid markers and vol-

ume of fluid method of Aulisa et al. [1]. It can be observed that the proposed method provides the most

accurate results. It is of note that the errors obtained with the proposed method are lower than those of

the hybrid method, which, in turn, represented a very substantial improvement over previous results. It
can also be observed from Table 2 that the spline-based reconstruction step included in the proposed meth-

od introduces a substantial improvement in accuracy, especially for fine grids, without appreciably increas-

ing the required CPU time.

The ability of the proposed method to maintain the integrity of thin filaments for coarse grids, avoiding

the generation of �flotsam�, can be observed from Figs. 12 and 13, in which the results of the proposed

method for the interface shape are compared with those obtained with the previous EMFPA-SIR method

proposed by López et al. [24] (which, in turn, substantially improved the results of the methods proposed in

[18,33], and were comparable with those of Aulisa et al. [1] only for the finest grid), and with the EMFPA
algorithm and the reconstruction method of Puckett. In both figures, the dotted lines correspond to a ref-

erence solution obtained with the proposed method and the 256 · 256 grid. The greater accuracy of the pro-

posed method is visually more evident in the results for the grid of 32 · 32 shown in Fig. 12, but also for the

finer grids shown in Fig. 13. It can also be observed that, although the previous EMFPA-SIR method tends

to reduce the generation of �flotsam� and to maintain the length of the filament slightly longer than when

Puckett�s reconstruction method is used, the results for the final form of the interface at t = T are still poor.

For the grids depicted in Fig. 13, the accuracy provided by the EMFPA-SIR method is clearly greater than

that obtained with Puckett�s method, although the filament fragmentation is still present for the grid of
64 · 64.

Tables 1 and 2 also show the relative CPU-time consumed in the simulations carried out in this work, in

all of which the analytical procedure described in Section 2.3 to enforce local volume conservation has been

used, regardless of the reconstruction method adopted. It can be observed that the reconstruction method

of Puckett is always more than twice as time consuming as the SIR algorithm, while the relative CPU-time

consumed with the proposed method is very close to that required by the SIR algorithm, especially for fine

grids. Note that, as the grid becomes finer, the ratio between the number of cells with two segments and

only one segment decreases, and so the proposed algorithm tends to reach a degree of accuracy and



Table 1

L1 error norm and order of convergence, as defined by Eqs. (18) and (19), obtained for T = 8 and different grid sizes in the time-

reversed single vortex test, using Puckett�s reconstruction method and different advection algorithms, and the EMFPA-SIR algorithm

[24]

Reconstruction algorithm Grid size E O Relative CPU-time

Puckett Rider and Kothe [33]

32 · 32 4.78 · 10�2 –

2.78

64 · 64 6.96 · 10�3 –

2.27

128 · 128 1.44 · 10�3 –

–

256 · 256 – –

Harvie and Fletcher [18]

32 · 32 3.72 · 10�2 –

2.45

64 · 64 6.79 · 10�3 –

2.52

128 · 128 1.18 · 10�3 –

–

256 · 256 – –

EMFPA [24]

32 · 32 3.77 · 10�2 3.0

2.52

64 · 64 6.58 · 10�3 13.6

2.62

128 · 128 1.07 · 10�3 59.4

2.19

256 · 256 2.35 · 10�4 248.4

SIR [24] EMFPA [24]

32 · 32 4.64 · 10�2 1.0

2.97

64 · 64 5.94 · 10�3 4.9

3.46

128 · 128 5.39 · 10�4 23.9

2.48

256 · 256 9.63 · 10�5 114.1
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efficiency similar to that of the SIR algorithm. We cannot directly compare the computational resources

required by the proposed method and the hybrid method of Aulisa et al. [1]. These authors recognize that

marker advection, which is carried out using a fourth-order Runge–Kutta method, is by far the most time

consuming part of the algorithm, and that only if the number of subdivisions of the time step is limited to
one or two (the results presented in Table 1 were obtained using four substeps) will the CPU-time of the

hybrid method be comparable to that of a VOF method using an iterative second-order accurate recon-

struction algorithm.

Although the method proposed in this work (essentially of a VOF type) does not reach the level of accu-

racy of recent front tracking and markers methods, it substantially reduces the differences in the accuracy

provided by Lagrangian methods and previous volume of fluid methods in tracking fluid filaments of thick-

ness smaller than the cell size. We can mention, for example, the new algorithm proposed by Aulisa et al.

[3], which is based on fixed markers, which are maintained throughout the simulation, and area-preserving
markers, which are added at each time step by locally imposing an area conservation constraint. As in a



Table 2

L1 error norm and order of convergence, as defined by Eqs. (18) and (19), obtained for T = 8 and different grid sizes in the time-

reversed single vortex test

Reconstruction algorithm Grid size E O Relative CPU-time

Hybrid markers-VOF [1] 32 · 32 2.53 · 10�2 –

3.19

64 · 64 2.78 · 10�3 –

2.54

128 · 128 4.78 · 10�4 –

2.04

256 · 256 1.16 · 10�4 –

Proposed method without spline-based reconstruction step 32 · 32 7.41 · 10�3 1.3

1.83

64 · 64 2.12 · 10�3 5.4

2.31

128 · 128 4.27 · 10�4 26.3

1.58

256 · 256 1.43 · 10�4 117.0

Proposed method (including spline-based reconstruction step) 32 · 32 5.78 · 10�3 1.6

1.71

64 · 64 1.77 · 10�3 6.1

2.42

128 · 128 3.30 · 10�4 27.7

1.93

256 · 256 8.69 · 10�5 121.3

Comparison between the results of the proposed method with and without including the spline-based reconstruction step and those of

the hybrid method of Aulisa et al. [1].
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previous work of these authors [1], in order to increase the accuracy of the interface position at each time

step, they use a fourth-order Runge–Kutta method to advect the markers along the streamlines, a scheme

that introduces a high resolution of the interface and produces very accurate results, although probably at

the cost of higher CPU-times consumed. To give an idea of the number of markers used in [3] and in

this work, we can say that, for a single-vortex test using a square of fluid of side 9/32, initially centered

at (0.5,0.75), and a grid of 32 · 32 cells, they used 860 markers to define the deformed interface at

t = T/2, whereas we use 263 markers but only to improve the orientation and location of the interface

segments.
5.2. Rayleigh–Taylor instability test

In this section, we present the results of a test in which a heavy fluid of density q1 = 1.225 kg m�3 lies

above a light fluid of density q2 = 0.1694 kg m�3 in a rectangular domain 1 m wide by 4 m high. The dy-

namic viscosity of both fluids, which are assumed to be non-miscible, is 3.13 · 10�3 kg m�1 s�1. This test

was performed by, among others, Bell and Marcus [6] and Puckett et al. [32] using a VOF-type method

and by Popinet and Zaleski [29] using a front tracking method. Due to the symmetry of the problem, only
half of the physical domain was solved. The interface shape is initially a cosine function, y = � 0.05cos(px/
k), where k is the computational domain width. The horizontal coordinate x has its origin at the symmetry

axis, where appropriate boundary conditions are imposed. Free-slip boundary conditions were imposed at

the upper and bottom walls, and symmetry conditions at the other lateral boundary. A CFL number based

on the maximum velocity in the domain of 0.1 was used to obtain the results presented below.
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Figs. 14(a) and (b) show the results for the interface shape (instead of the interface segments, we repre-

sent the area occupied by the upper fluid in every cell of the interface, where 0 < F < 1) obtained at different

instants on a grid of 32 · 256 cells using the EMFPA advection algorithm and two reconstruction algo-
rithms: Puckett�s and the proposed algorithm, respectively. The ability of the proposed method to maintain

thin filaments using a relatively coarse grid can be observed by comparing the results obtained at t = 0.95 s.

Notice that the filament has almost disappeared in Fig. 14(a), whereas its integrity is maintained when the

proposed reconstruction method is used. A detail of the interface shape at t = 0.95 s is shown at the right of
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Figs. 14(a) and (b), where the results obtained on grids of 32 · 256 and 64 · 512 cells are compared with a

reference solution obtained on a grid of 128 · 1024 cells using the EMFPA algorithm and the proposed

reconstruction method, which was found to be nearly grid independent (for clarity, only the interface seg-

ment is represented at every interfacial cell in the reference solution). As occurred in tests with prescribed

velocity field, the CPU time required by the proposed algorithm is shorter than that consumed with Puck-
ett�s algorithm, although the difference in the total CPU time consumed in the present test, in which the

Navier–Stokes equations consume the largest fraction of the total CPU time, is much lower (around 4%
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at the instant t = 0.95 s, for the grid of 32 · 256 cells). Similarly, the increase in the total CPU time con-

sumed when the proposed algorithm is used instead of that proposed in [24] is very small (lower than

0.1% at the instant t = 0.95 s).
6. Conclusions

An improvement of the reconstruction method proposed by López et al. [24], which allows tracking fluid

structures thinner than the cell size, has been presented. The method is based on using markers that are

placed every time step at the mid-points of the cell interface segments in order to improve the accuracy

of the interface reconstruction, although it can essentially be considered as a VOF-type method. The effi-

ciency and accuracy of the new reconstruction method, which reduces drastically the formation of �flotsam�
even for very coarse grids, compare favorably with other recent volume of fluid and hybrid methods.
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